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1.   Introduction 

 

Transonic and supersonic flows may contain gas dynamic discontinuities; 

therefore special approaches in their numerical simulation are required. The main 

issue is how to approximate convective fluxes. Numerical scheme for convective 

flux evaluation should provide sufficiently accurate resolution of discontinuities 

in the absence of the spurious oscillations caused by solution discontinuities. 

Godunov-type schemes, based on solving the local Riemann problem for a 

computational cell interface, satisfy these requirements, for example, the Roe 

scheme [8]. In its basic form, any Godunov-type scheme is of the first-order 

accuracy, since it is constructed under assumption of the piecewise-constant 

approximation of the solution. Higher order spatial discretization can be achieved 

by replacing the piece-wise-constant approximation of the solution by a 

piecewise-polynomial approximation for each cell, in particular by a piecewise-

linear approximation in the case of second-order scheme. This technique is known 

as the MUSCL approach [10], and its primary role is to provide reconstructed 

values of gas-dynamic variables at the “left” and „right‟ sides of a cell interface. 

Remarkably, that the stage of variable reconstruction is completely decoupled 

from the physical stage that covers solving the Riemann problems all the cell 

interfaces. However, the use of high-order schemes may lead to appearance of 
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spurious numerical oscillations around discontinuities. To avoid or at least to 

diminish considerably such deficiencies of the solution a special non-linear 

limiter-function should be used at the polynomial reconstruction stage in order to 

modify properly slope of the solution in each cell. 

Most methods of limiter-based control of the oscillations are based on 

consideration of the one-dimensional scalar conservation equation. For this case, a 

reliable theory of non-oscillatory schemes has been developed [2, 3]. In the case 

of structured grids, these schemes can be extended to multidimensional problems 

in a straightforward way, using the quasi-one-dimensional approach. In the case 

of unstructured grids, there are two main techniques for variable reconstruction 

and limiter formulation. The first way is generalization of the quasi-one-

dimensional approach that is applied locally for each current face of an 

unstructured-grid cell (finite-volume). Methods of the second group are initially 

developed for multidimensional unstructured-grid applications, in these methods a 

scalar limiter-function is calculated using values of appropriate gas-dynamic 

variables in all neighbors‟ finite volumes. 

Starting from the pioneering work of Barth and Jespersen [1], the 

multidimensional approach was under active subsequent developments [5, 7, 11]. 

Some authors [5-7] have proposed also to use a second limiter that is a special 

function, which controls area where the main (primary) limiter is active.  

Despite a big amount of publications on the matter, there is no common 

opinion on the efficiency of a particular scalar limiter formulation for higher-order 

accuracy unstructured-grid computations. The present work is aimed at a 

comparative testing of different schemes with scalar limiters. 

 

2.   Computational Method 

 

2.1.  General formulation of the finite volume method 

Balance equations for compressible gas flows in a finite-volume formulation 

can be written as: 

0  




 M Sm

dSFd
w 


,  (1) 

where Ω is the control (finite) volume, M – number of finite-volume faces, Sm – 

area of the current face, m=1,M,  w ρ,ρu,ρv,ρw,ρH


– vector of variables, 

, , , ,n n x n y n z nF ρV ρuV pn ρvV pn ρwV pn ρHV     


– flux vector, nx, ny, nz – 

components of the normal to the face. 

Convective flux at a finite volume face can be written as a sum of the 

central-scheme flux and a diffusive flux: 
fF F D 

  
. In the first-order scheme 

the central-scheme flux is calculated as an average of values for the neighboring 

(“left” and “right”) computational cells (control volumes), the diffusive flux is 

evaluated by using the Roe‟s approximate Riemann solver: 
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 on the face is calculated with the Roe‟s average 

values of variables: 
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In case of second-order schemes, the central-scheme flux and the diffusive 

one are written as: 
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   (4) 

where 
/L R

fw


 denotes results of piecewise-linear reconstruction of the solution in 

the left/right cells. 

 

2.2. Solution reconstruction and limiters 

Piecewise-linear reconstruction of the solution in each cell is performed 

using gradients of involved variables at the cell center. For a current face, it gives  

/ /

/ / /( )L R L R

f L R L R L Ru u φ u r   


,   (5) 

where u  stands for any of the variables involved, /L Rφ – value of the scalar limiter 

in the left/right cell, /L Rr


– vector from the left/right cell center to the face center. 

Let‟s give formulations for several variants of the limiters presented in the 

literature, as well as for groups of limiters, for the sake of brevity, also called 

limiters. 

Variant 1. In [1], a scalar limiter (termed below as the BJ limiter) was 

proposed, the formulation of which is based on the monotonicity principle 

declaring that values of the linearly reconstructed function must not exceed the 

maximum and minimum of neighboring centroid values. The values of the limiter 

for each cell are found by the following procedure: 

1. Find the largest negative and positive difference between the solution in 

the immediate neighbors (index j) and the current control volume (index i) 

( )min/max

j iu min/max u u      (6) 

2. Compute the unconstrained reconstructed value at each face: 

 ij i iji
u u u r   


   (7) 

3. Compute a maximum allowable value of ijφ for all faces: 



E.V. KOLESNIK, E.M. SMIRNOV: ANALYSIS OF PERFORMANCE OF SCALAR LIMITERS … 

 

 
269 

 

( ) (1, )ijφ Φ y min y 
,   (8) 

where y=Δ Δ 
, ij iΔ u u   , maxΔ u   if 0Δ  , minΔ u    if 0Δ  , 1ijφ 

 
if 0Δ  . 

4. Calculate minimum value of ijφ : 

)φmin(φ iji    (9) 

Variant 2. According to the numerous evidence in the literature, usage of the 

BJ limiter may adversely affect the convergence properties of the solver. This 

happens for two reasons: non-differentiability in the computation of the 

reconstructed function and applying the limiter in regions of nearly uniform flow. 

Venkatakrishnan [11] has suggested several modification of the BJ limiter. 

He has introduced a smooth alternative to step 3 of the Barth-Jespersen procedure 

by replacing the function ( ) (1, )y min y   with    2 2( ) 2 2y y y y y      

(Fig.1 (с)). A further modification has been made to avoid applying the limiter in 

regions of nearly uniform flow and smooth extreme. Eliminating the effect of the 

limiter when ij iu u ε  , where  
3/2

ε K x  , x is a characteristic length for the 

control-volume and K is a tunable parameter, is achieved by adding a threshold to 

the function ( )y . As a result, (8) is replaced by following: 

2 2 2

2 2 2

1 ( ) 2

2
ij

ε
φ

ε
   

   

      
         

.   (10) 

Variant 3. In [5, 6] other modifications of the BJ limiter are presented. 

Firstly, a new approximation for ( )y , instead of (1, )min y , is proposed: 

P( ),
( )

1,

t

t

y y y
y

y y


  


,   (11) 

where 1 2ty  , P( )y  is the cubic polynomial satisfying P(0) 0 , P( ) 1ty  ,

P d (0) 1d y  , P d ( ) 0td y y   (Fig.1 (с)). 

Secondly, eliminating the effect of the limiter in nearly uniform regions is 

achieved by using the “second” limiter, which “switches off” the primary limiter 

when  
3/2max minu u u K x      , where x is a characteristic length of the 

control-volume. Besides, the “third” limiter, based on Mach-number distribution, 

is used to prevent the application of the limiter at stagnation points. 

Variant 4. The BJ limiter modifications suggested in [5, 6] require 

assignment of appropriate values of several user-specified parameters that is not 

convenient for engineering practice. In [4], a new second limiter has been 

proposed, which is simple, parameter-free, and easy-to-use: 

,))}1(tanh(1{5.0)(

,)](,φmax[φ max12





MLMF

MF


   (12) 
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where 
maxM  is  maximum Mach number in neighboring volumes, 

1φ  is any 

primary slope limiters, in particular the BJ limiter, L is a parameter, (its 

recommended value is of 5.0 [4]). 

Variant 5. The limiter introduced in [7] takes into account more multi-

dimensional flow physics, involving values of variables both in the cell-centers 

and the vertices surrounding or belonging to the cell of interest. For each current 

vertex, indexed by q, maximum allowable value of qφ is computed as:  

),1(min)(φ yyq  ,   (13) 

where y=    , i qu r  


, 
max

q iu u    if 0  , 
min

q iu u    if 0  , 

1qφ 
 
if 0  , 

min/max

qu – minimum/maximum value among those for all the 

neighboring volumes which share the vertex q, qr


 vector from the cell center to 

vertex q. Then the minimum value among the all found for qφ are selected. 

Variant 6. In the same work [7], modifications of the primary limiter similar 

to those proposed in [11] were presented as well. According to these 

modifications, for each vertex q maximum allowable value of qφ  is computed by 

using formula (10) instead of (9), where   and   are defined as in variant 5.  

 

 
Fig. 1. Scheme to Construction of limiters (a,b) and variants of function Φ(y) (c) 

 

Short denotations of the limiters under consideration are given in Table 1. 

The parentheses in some positions cover parameters of corresponding limiters. 

Parameters M1 and M2 of the MO limiter were introduced in [6], and the values 

recommended in [6] were assigned for these parameters when performing 

computations presented below. 

Table 1.Limiter denotation 

Limiter denotation 

Variant 1 [1] BJ 

Variant 2 [11] VK (K) 

Variant 3 [5, 6] MO (K, M1, M2) 

Variant 4 [4] KS (L) 
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Variant 5 [7] MLP-u1 

Variant 6 [7] MLP-u2 (K) 

 

3.    Results and discussion 

 

The in-house CFD-code SINF [9] that is under permanent development at 

the St.-Petersburg Polytechnic University was used for the present computations. 

All the above given second-order schemes have been implemented in the code. 

Linear-reconstruction procedure is applied to conservative variables, and the 

Green-Gauss method is used for gradient calculations. The time-stepping is 

carried out with an implicit scheme introducing increments of variables. 

Discretization of the implicit (“stabilizing”) operator is based on the first-order 

split coefficient matrix method. 

Comparative test computations varying limiters have been carried out 

considering 2D problems of inviscid gas flow. In the present work, results 

obtained for  transonic flow over a NACA 0012 airfoil with free-stream Mach 

number of 0.8 and angle of attack 1.25 degrees (Fig. 2(а)) are reported. The 

solutions given below were obtained with a computational mesh consisting of 

161×42 nodes (Fig. 2(b)), the Courant number was set to 0.2. These solutions are 

compared with the grid-converged (reference) solution (Fig.2 (c)) calculated with 

the second-order SLIP scheme [4], also implemented in the SINF code. 

 

 
Fig. 2. Scheme of flow past NACA-0012 airfoil (a), fragment of computational mesh (b) and 

Mach number map for reference solution (c) 

 

Fig. 3 presents a comparison of the airfoil-surface pressure coefficient 

distributions computed with different schemes/limiters. Namely, zones near the 

suction-side shock and in the vicinity of the leading edge are shown. One can see 

that all the limiters are effective with respect to eliminating un-physical 

oscillations in the shock region. 

It should be noted however that usage of the BJ and the MLP-u1limiters 

causes difficulties in getting a fully-converged steady-state solution: convergence 

stalls after about two-three orders of magnitude reduction in the maximal 

residuals. Limiters VK(0) and MO(0,0,0) also fail to reach full convergence, 

despite the use of differentiable functions in their formulation. Fully converged 
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solutions were obtained with the MO(3, 0.8, 0.85), VK(3), KS(1), MLP-u2(3) 

limiters when selecting appropriate values of the parameters to avoid applying the 

limiter in regions of nearly uniform flow. 

The solution closest to the reference one is obtained in the case of the BJ 

scheme, in spite of the lack of full convergence. The solution computed with the 

VK (0) limiter deviates more from the reference one in the near-leading-edge 

region. It is attributed to the fact that the function ( )y  given by (10) lies 

substantially below the function (1, )min y  for small values of y (see Fig. 1 (c)). 

Adding a threshold to the function ( )y that corresponds to the limiter VK (3) 

case allows to remedy this drawback. The solution obtained with the MO(0,0,0) 

limiter practically does not differ from the BJ limiter solution. 

Fig.4 shows spatial distributions of the limiter under testing (for variable ρ). 

One can see that in case of the MLP limiter the zone where the limiter is activated 

is much larger than for other variants. The MLP-u2(3) limiter is activated near the 

leading edge, because of that the solution deviates more from the reference one 

even when using the threshold suggested. Applying the KS limiter is quite 

efficient for this test case, however it is not applicable to pure supersonic flows. 

 

 
Fig. 3. Computed surface pressure variations in the shock region (left) and near the leading edge 

(right) 
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Fig. 4. Maps of limiter values: BJ (a); VK(3) (b); MLP-u2(3) (c); KS(1) (d) 

 

3. Conclusion 

 

Slope limiters can cause convergence problems when computing gas 

dynamic flows with discontinuities. As a result of the fulfilled testing of various 

formulations of the limiters reported in the literature, problematic variants have 

been distinguished, especially those when one is not able to get a fully converged 

solution. 

Fully converged solutions can be obtained with the use of fully 

differentiable limiters which are not activated in the regions of nearly uniform 

flow. However, usage of differentiable functions may lead to additional numerical 

dissipation. The smallest amount of dissipation is achieved when using a smooth 

limiter function ( )y  which lies closest to (1, )min y , as in the case of the MO 

limiter. Eliminating the limiter effects in zones of nearly uniform flow requires 

additional efforts to select optimal values of parameters used in the primary, the 

second and, if any, third limiters. 
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